Quantitative time-lapse fluorescence microscopy in single cells.

نویسندگان

  • Dale Muzzey
  • Alexander van Oudenaarden
چکیده

The cloning of green fluorescent protein (GFP) 15 years ago revolutionized cell biology by permitting visualization of a wide range of molecular mechanisms within living cells. Though initially used to make largely qualitative assessments of protein levels and localizations, fluorescence microscopy has since evolved to become highly quantitative and high-throughput. Computational image analysis has catalyzed this evolution, enabling rapid and automated processing of large datasets. Here, we review studies that combine time-lapse fluorescence microscopy and automated image analysis to investigate dynamic events at the single-cell level. We highlight examples where single-cell analysis provides unique mechanistic insights into cellular processes that cannot be otherwise resolved in bulk assays. Additionally, we discuss studies where quantitative microscopy facilitates the assembly of detailed 4D lineages in developing organisms. Finally, we describe recent advances in imaging technology, focusing especially on platforms that allow the simultaneous perturbation and quantitative monitoring of biological systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quantitative Method to Track Protein Translocation between Intracellular Compartments in Real-Time in Live Cells Using Weighted Local Variance Image Analysis

The genetic expression of cloned fluorescent proteins coupled to time-lapse fluorescence microscopy has opened the door to the direct visualization of a wide range of molecular interactions in living cells. In particular, the dynamic translocation of proteins can now be explored in real time at the single-cell level. Here we propose a reliable, easy-to-implement, quantitative image processing m...

متن کامل

Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy

Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is si...

متن کامل

On-Chip Living-Cell Microarrays for Network Biology

The recently developed field of systems biology creates a new framework for understanding the molecular basis of physiological or pathophysiological states of cells. Screening modalities that can be used on single cells are needed to study cellular systems biology. The recent development of cellular microarrays has provided a method for the complex molecular analysis of living, single cells (Ch...

متن کامل

Analysis of transient migration behavior of natural killer cells imaged in situ and in vitro.

We present a simple method for rapid and automatic characterization of lymphocyte migration from time-lapse fluorescence microscopy data. Time-lapse imaging of natural killer (NK) cells in vitro and in situ, both showed that individual cells transiently alter their migration behavior. Typically, NK cells showed periods of high motility, interrupted by transient periods of slow migration or almo...

متن کامل

Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword.

Interbacterial interaction pathways play an important role in defining the structure and complexity of bacterial associations. A quantitative description of such pathways offers promise for understanding the forces that contribute to community composition. We developed time-lapse fluorescence microscopy methods for quantitation of interbacterial interactions and applied these to the characteriz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annual review of cell and developmental biology

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2009